skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Connie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Tzekov, Radouil (Ed.)
    Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon. Stimulation was performed with asymmetric charged-balanced (ACB) waveforms that are safer than direct current and more effective than traditional, symmetric biphasic waveforms. In addition to partial anatomical restoration, ACB waveforms conferred partial restoration of visual function as measured by pattern electroretinogram recordings and local field potential recordings in the superior colliculus—and did so without the need for genetic manipulation. Our work suggests that exogenous electric field application can override cell-intrinsic and cell-extrinsic barriers to axon regeneration, and that electrical stimulation performed with specific ACB waveforms may be an effective strategy for directing anatomical and functional restoration after CNS injury. 
    more » « less
    Free, publicly-accessible full text available January 9, 2026
  3. Abstract Genomic deep learning models can predict genome-wide epigenetic features and gene expression levels directly from DNA sequence. While current models perform well at predicting gene expression levels across genes in different cell types from the reference genome, their ability to explain expression variation between individuals due tocis-regulatory genetic variants remains largely unexplored. Here, we evaluate four state-of-the-art models on paired personal genome and transcriptome data and find limited performance when explaining variation in expression across individuals. In addition, models often fail to predict the correct direction of effect ofcis-regulatory genetic variation on expression. 
    more » « less